Safe AI for the Enterprise

At Centific, we are building a safe, sustainable, and responsible future through ethical AI modeling and development.

Our Safe AI Consulting Services ensure your AI solutions follow best practices for transformational outcomes. We align our principles with IEEE ethical standards and the Microsoft Responsible AI Charter to ensure robustness, explainability, transparency, fairness, privacy, and sustainability. We are committed to establishing our enterprise clients on the path to success with exemplary AI strategies, development, and integrations.

Safe AI Consulting Services

Our team of seasoned experts will guide you toward AI solutions that not only meet regulatory requirements but will also inspire trust with your partners and customers while fostering AI best practices for the future.


Access to our specialized experts who provide comprehensive guidance, perform assessments, and develop key business strategies to identify and resolve potential biases, privacy concerns, and fairness issues in a variety of AI solutions. We work closely with clients to establish and deliver robust ethical frameworks, implement best practices, and adhere to all regulatory requirements, which foster trust and drive responsible AI innovation.

Data Services

Our expertise in Data Services ranges from Validation to Refinement to ensure an all-inclusive review of your data needs for Ethical and Safe AI execution. We also apply Reinforcement Learning from Human Feedback (RLHF) that is accomplished through our global talent pool of 1M+ experts combined with our AI-based techniques to guarantee your models will improve significantly over time.

AI Red Teaming

Chatbots and Generative AI have become part of our daily lives thanks to Large Language Models (LLMs), so ensuring your applications have robust safeguards to prevent harmful behaviors is a critical mission. Our Al Red Teaming experts have refined Prompt Hacking techniques and frameworks to keep your model safe and secure.


Our Benchmarking Services deliver performance assessments of various Generative AI models available for specific business cases. This is done by creating custom evaluation datasets that help us select the appropriate models for what each client is trying to achieve though their AI initiatives. 

Safe AI Framework

A proven and highly comprehensive approach throughout the lifecycle of your AI solutions.

Brain Icon


  • Core Audit & Advisory Team
  • External Reviewers
  • Subject Matter Experts
  • Domain & Industrial Experts
Process icon


  • Risk Assessments
  • Compliance Audits
  • Mitigations & Recommendations
  • Roadmaps
Tools & Technologies icon

Tools & Technologies

  • Assessment Templates
  • Dashboards
  • Review & Audit Tools
  • Continuous Monitoring

The 10 Guiding Principles of Safe AI

The guiding principles of Safe AI are a set of ethical and technical guidelines designed to ensure that AI Systems are developed, deployed, and utilized in ways that prioritize safety, minimize risks, and prevent unintended negative consequences.

Robustness icon


Enhancing the resilience of machine learning models against deliberate attacks or perturbations.

Explainability icon


Easily understanding and interpreting decisions or predictions from AI models. 

Transparency icon


Ensuring clarity of overall model development and deployment processes. 

Fairness icon


Avoidance of bias or discrimination in ML models, ensuring equitable treatment and outcomes across different groups or individuals.

Privacy icon


Safeguarding sensitive or personal information contained within the data used for training or making predictions.

Performance icon


Ensuring accuracy, speed, resource utilization, and other relevant metrics are leveraged to define success.

Confidence icon


Achieving a high degree of certainty or trust in predictions or decisions.



Recreating and validating ML experiments and results quickly and easily.

Generalization icon


Performing well with unseen data, ensuring reliable and unbiased predictions across diverse contexts.

Sustainability icon


Avoiding the possibility of any negative impact on humans and our environment 

Our Safe AI Maturity Model

We help clients move forward on their Safe AI journey from the initial "awareness" stage to the last stage of being "transformational" in order to reach a compliance level of 90% and higher.



In this initial stage, organizations have an AI maturity level of less than 20%. They are aware of potential biases, fairness issues, privacy concerns and other ethical challenges in their AI development and deployment processes. However, there is no clear strategy, methodology nor tools that allow them to address these issues swiftly or comprehensively.

Awareness state



The second stage of the AI maturity level is between 20% - 50%. Organizations are mainly focused on implementing guidelines, policies, and practices to ensure fairness, transparency, and accountability in AI systems. Also, there is consideration on a variety of strategic activities such as conducting impact assessments, adopting ethical AI frameworks, and training AI developers on responsible AI practices. However, there may not be a tangible effort in place that aligns AI development with ethical principles.

Active state



The third stage means an organization has moved into the 50% - 90% of their AI maturity. It's a result of a more deeply ingrained integration of responsible best practices throughout the entire organization and its culture, processes, and technologies. Therefore, AI governance setup is required to ensure and sustain the highest level of integrity at all levels.

Systemic state



In the final stage, organizations have successfully achieved an AI maturity level of over 90% - responsible AI practices are no longer just a set of check boxes. Organizations continue to contribute, support, and promote key AI principles across teams and tend to share best practices with others among their industry and relevant communities.


The Process Cycle for Client Engagement

  • Assess

    Risk Assessment of the AI solution/model in respect to safe AI's framework and provide mitigation plan and recommendations. 

  • Classify

    Classify the model maturity and create the roadmap.

  • Measure

    Tool based monitoring & reporting for the model maturity improvement.

Safe AI Journey infographic