Safe AI Consulting Services
Our team of seasoned experts will guide you toward AI solutions that not only meet regulatory requirements but will also inspire trust with your partners and customers while fostering AI best practices for the future.
Consulting
Access to our specialized experts who provide comprehensive guidance, perform assessments, and develop key business strategies to identify and resolve potential biases, privacy concerns, and fairness issues in a variety of AI solutions. We work closely with clients to establish and deliver robust ethical frameworks, implement best practices, and adhere to all regulatory requirements, which foster trust and drive responsible AI innovation.
Data Services
Our expertise in Data Services ranges from Validation to Refinement to ensure an all-inclusive review of your data needs for Ethical and Safe AI execution. We also apply Reinforcement Learning from Human Feedback (RLHF) that is accomplished through our global talent pool of 1M+ experts combined with our AI-based techniques to guarantee your models will improve significantly over time.
AI Red Teaming
Chatbots and Generative AI have become part of our daily lives thanks to Large Language Models (LLMs), so ensuring your applications have robust safeguards to prevent harmful behaviors is a critical mission. Our Al Red Teaming experts have refined Prompt Hacking techniques and frameworks to keep your model safe and secure.
Benchmarking
Our Benchmarking Services deliver performance assessments of various Generative AI models available for specific business cases. This is done by creating custom evaluation datasets that help us select the appropriate models for what each client is trying to achieve though their AI initiatives.
Our Safe AI Maturity Model
We help clients move forward on their Safe AI journey from the initial "awareness" stage to the last stage of being "transformational" in order to reach a compliance level of 90% and higher.
- Awareness
- Active
- Systemic
- Transformational
Awareness
Awareness
In this initial stage, organizations have an AI maturity level of less than 20%. They are aware of potential biases, fairness issues, privacy concerns and other ethical challenges in their AI development and deployment processes. However, there is no clear strategy, methodology nor tools that allow them to address these issues swiftly or comprehensively.

Active
Active
The second stage of the AI maturity level is between 20% - 50%. Organizations are mainly focused on implementing guidelines, policies, and practices to ensure fairness, transparency, and accountability in AI systems. Also, there is consideration on a variety of strategic activities such as conducting impact assessments, adopting ethical AI frameworks, and training AI developers on responsible AI practices. However, there may not be a tangible effort in place that aligns AI development with ethical principles.

Systemic
Systemic
The third stage means an organization has moved into the 50% - 90% of their AI maturity. It's a result of a more deeply ingrained integration of responsible best practices throughout the entire organization and its culture, processes, and technologies. Therefore, AI governance setup is required to ensure and sustain the highest level of integrity at all levels.

Transformational
Transformational
In the final stage, organizations have successfully achieved an AI maturity level of over 90% - responsible AI practices are no longer just a set of check boxes. Organizations continue to contribute, support, and promote key AI principles across teams and tend to share best practices with others among their industry and relevant communities.

The Process Cycle for Client Engagement
-
Assess
Risk Assessment of the AI solution/model in respect to safe AI's framework and provide mitigation plan and recommendations.
-
Classify
Classify the model maturity and create the roadmap.
-
Measure
Tool based monitoring & reporting for the model maturity improvement.
